Battle of the Epic Whirlwinds: Hurricane Vs. Tornado

Earth Satellite Space


Destructive Powerful Tornado

In the Free State of South Africa, 2012 was a year marked by an outbreak of severe thunderstorms. This province lies quite far inland of the subcontinent, to the northeast of Cape Town and to the west of the Drakensberg; the magnificent mountain chain that borders the eastern coastline of South Africa. These severe thunderstorms caused quite a bit of grief for the inhabitants of the Free State, levelling 55 houses and hospitalising 5 people, according to All Africa online publication. But in addition to the heavy rains, lightning and wind damage, these thunderstorms had the ill-grace to drop a couple of tornadoes too!

To put things into perspective, South Africa is not a country known for tornadoes. If you’re thinking of tornadoes, your imaginative context is probably located in the aptly named ‘Tornado Alley’ in the mid-western states of America. Now, as someone who has a degree in atmospheric science, you can imagine how many questions I was fielding from people who had heard about the severe weather events I just mentioned. Not questions as such: statements rather. People rarely ask me questions about the weather. I think they’re afraid of the answers. I can handle that… but what I couldn’t handle was the fact that people were confusing hurricanes with tornadoes!

“Did you hear about the hurricanes in the Free State?”

Portrait of young woman slapping hand on head having a duh momen

To anyone in atmospheric, Earth, ocean or any related sciences – regardless of your specialization – confusing tornadoes with hurricanes is like confusing your grandmother with Megan Fox. It’s like confusing an elephant with a pineapple. The concept of a hurricane tearing across the Free State is about as alien to the weather educated as a giraffe cavorting around the North Pole. Wearing snow shoes.

But, before you cringe at the memory of you making this rather Herculean error, one must take into account that the majority of you out there aren’t weather educated. That’s perfectly all right! We’re going to change that right now. Hurricanes and tornadoes: what’s the difference? Moreover, what’s the big deal if you get them confused? Well, when it comes to these two somewhat (ok, VERY) tempestuous weather phenomena, size really, really, REALLY…

… really, REALLY, really, REALLY, REEEEEEEEALLY does count.

Hurricanes: Kicking Ass and Taking Names

Hurricane Fran satellite image

Satellites captured this fairly terrifying image of Hurricane Fran hurtling towards North Carolina on the 5th September 1996. “Fran” caused so much trouble that they decided to NEVER call another hurricane “Fran” again. 

FYI, hurricanes are named alphabetically according to their order of development during the hurricane season. The first to appear will be named something beginning with an ‘A’, the second ‘B’ and so on and so forth. Hurricane Fran was therefore the 6th fully fledged tropical cyclone to develop that season and one whose limelight was solidly claimed in 2005 by Katrina and again in 2012 by Sandy. Those bitches!

Hurricanes are large tropical storms born over the equator. Fed by prodigious updrafts of hot, moist, sexy air, these giant swirling monsters generate, via condensation alone, 200 times the electrical generating capacity of the entire freaking planet, according to the Atlantic Oceanographic and Meteorological Laboratory. For those of you who like numbers or are easily impressed by them, this equates to 600,000,000,000,000 Watts. This is not even to mention the amount of energy generated by hurricane winds, which is an additional 1,500,000,000,000 Watts of unbridled weather rage!

I don’t even know what that number is… a billion million? A trillion zillion billon million?

Ooh! Aah! Hurricane Statistics

Windy Coast huge waves

  • Damage: Should they make landfall, hurricanes can cause tens of billions of dollars’ worth of damage. Katrina was only a category 3 storm when it had its fender-bender with the Mississippi Gulf Coast. And yet its damage was estimated at $81,000,000,000!
  • Storm Diameter: Hurricanes are huge systems with an average diameter of 800 km (500 mi), although Hurricane Carla, which raged into the Texas coast in 1961, was an especially big girl at 1280 km (800 mi) across.
  • Wind speeds: Hurricanes are wrathful systems with category 5 storms (you do not get larger) generating winds of over 250 km/hr or 156 mi/hr.
  • Associated Severe WeatherHurricanes are social creatures. They have loads of friends they like to bring to the party they tend to gatecrash. These include torrential rainfall, thunderstorms, lightning, hail and storm surges, which is an increase in average sea level that can be in excess of 5 meters or 19 feet! To add insult to grave injury, hurricanes can even generate tornadoes.
  • Weakness: For all their size, energy and capacity for total annihilation, these tropical super storms cannot survive over land. They require a tireless volume of hot, moist air – as is found over the equatorial oceanic regions – in order to preserve storm motion and momentum. That dry continental air just won’t do. Plus, all the friction and turbulence caused by onshore topography (mountains and such) tend to break up the party pretty quickly.



‘Nother Cow!”

“Actually I think that was the same one”

– ‘Twister’, 1996

I regard tornadoes the same way a sadomasochist regards nipple clamps: they’re deliciously terrifying. Having said this, my opinion is fantastically unfounded because I have never, ever witnessed or had my house relocated by a tornado. If I had, I would probably drop the enthusiasm a notch.

Strong tornado in Kansas

 A Kansas tornado tears across a country roooooad, take me hooooome.

A tornado is a raging column of rotating air that extends from the ground to the base of its parent cumulonimbus cloud, “Cumulonimbus” being the longest and fanciest word everyone remembers from High school geography. I know this because every time I tell someone I have a background in weather, they say, “Oh! So you, like, studied cumulonimbus clouds!”

Yeah, something like that buddy.

Tornadoes are generated by severe thunderstorms in atmospheric environments full of wind shear and abundant lower level moisture, amongst other ingredients. Next time you’re in the bath or swimming pool, make your hand flat, put it in the water and paddle. You’ll notice tiny little vortices or whirlpools that spin off in either direction.

“Wind shear” really just refers to two masses of air moving at different speeds and/or different directions to each other. And, just like your hand in the pool, shear in the atmosphere generates the same kind of ‘whirlpools’ in the air, although you can’t see them because air is invisible. What happens next in tornado genesis is a powerful updraft of air, which pushes these horizontal columns of rotating air vertical. And this is when shit starts getting real.

Severe weather thunderstorm.png

A gorgeous supercell thunderstorm at sunset. This cloud formation, known as a “mesocyclone” to academics and a “mothership” to nerds, is the atmospheric platforms from which tornadoes are commonly spawned.

Ooh! Aah! Tornado Statistics

  • Damage: It just takes one tornado straying into a heavily built up area to rack up damage totals that would bankrupt an entire country. In May of 2011, a single tornado tore through Joplin in Missouri – a city of 50,000 inhabitants. The reports that emerged at the time estimated the damage of insured property alone to be in the region of $3,000,000,000 (billion), and all from a single tornado. This doesn’t even take into account the uninsured losses suffered.

Tornado damage in Lapeer, Michigan.

On the brighter side – Tornado, 1: Insurance companies, 0.

  • Wind Speeds: Tornadoes are violent creatures. The wind speeds that tear around the funnel, more specifically, of F5 tornadoes, have been clocked in at over 500 km/hr or 315 mi/hr. This is more than half the cruising speed of a commercial airliner.
  • Associated Severe Weather: Like hurricanes, tornadoes are social. You will generally find them hanging out with lightning, torrential rain, giant hailstones, wind (duh) and the occasional cow or 18-wheeler semi-trailer.
  • Lifespan: For all their fury, tornadoes are relatively short-lived with the longest ‘twister’ on record having raged on for 3.5 hours. This suspected F5 tornado, dubbed the Tri-State Tornado, tore through 350 km (220 mi) of Illinois, Missouri and Indiana on the 18th March in 1925, leaving almost 700 people dead in its wake.

While hurricanes may boast more impressive size statistics than a single tornado, one should note that the kinds of thunderstorms that generate tornadoes are rarely isolated and often travel in waves with one thunderstorm cell feeding the formation of several others. In 2011, in fact, the National Severe Storm Laboratory recorded the most prolific outbreak of tornadoes in American history! Between April 25th and April 28th 2011, a staggering 358 tornadoes were recorded, with the majority of them having touched down within a single 24-hour period. Thanks to a much more sophisticated weather forecasting and tornado warning system, this outbreak caused half the death toll as the single Tri-state Tornado of 1925.

Class Dismissed: Your Take-Home Message

real airport weather map Hurricane Frances

There are many big and important differences between hurricanes and tornadoes, most of which are related to scale: scale in size, in wind speeds, in damage done and in lifespan. Hurricanes are huge weather systems that last days and can cause widespread destruction. Tornadoes are much, much smaller weather phenomena generated by severe thunderstorms. Yet, in spite of their exponentially smaller size and shorter life spans, they can do incredible localized damage and frequently boast wind speeds greater than even a Category 5 hurricane.

So, to sum it all up and pack it in a nutshell:

Tornadoes can rearrange your back garden and perhaps relocate your house.

Hurricanes can rearrange your province and perhaps the entire eastern coastline of your country.

Real Sprites Caught on Camera!

No, this is not a joke, although I’m not referring to the sprites of fairy tales…

A “sprite” is a whimsical name given to a particularly ephemeral upper atmosphere phenomenon that’s generated by lightning discharges in powerful thunderstorm clouds. Sprites are witnessed as whispy colourful flickering shapes above the thunderstorm clouds and in this video, we watch a team of storm-chasers in hot pursuit of these large-scale electrical discharges.

The things people do for science…

Video Source:Storm Chasing in a Jet – Capturing Upper-atmospheric Lightning” Uploaded by CuriousVideos to YouTube channel

Original Source: From NOVA – At the Edge of Space by PBS

Northern Lights: The Sky’s On Fire!

National Geographic filmmakers Claus and Anneliese Possberg put together this outstanding time lapse video showing the aurora borealis (northern lights) dancing and crackling across the evening sky in Norway.

Source: “Spectacular Norway Northern Lights” – National Geographic. Music by Justin Durban, 

Youtube channel at

For sexy servings of moist science in your box, I mean, in your inbox – LIKE the new Why? Because Science Facebook page! Just imagine replacing those vapid status updates and infuriating inspirational quotes with awesome videos of natural disasters, animals being interesting (and occasionally inappropriate) and riveting blogs on the coolest science topics!

Shocking Video of Lighting in Slow Motion

This clip from Discovery Channel’s “Raging Planet” shows lightning in super slow motion leave the cloud and connect with the ground. Capturing and watching this footage is helping atmospheric scientists develop a much better understanding of how lightning works. For the rest of us lay folk, it makes for some super interesting visual entertainment!

Video Source: Discovery Channel “Raging Planet” – Lightning. Uploaded by ONE Interpreting on YouTube channel

Like Why? Because Science‘s Facebook page to receive sexy doses of entertaining science on the daily!

Enlightening! How Lightning is Made

Lightning thunderstorm picture 

What’s more than ten kilometres (6 miles) long, five times hotter than the surface of an average star and packs in more strokes per second than an over-zealous teenage boy who’s just discovered the joy of internet porn?

Yeah, I know. The picture kind of gives it away doesn’t it?

I have had a complete love affair with thunderstorms for as long as I can remember. I think they are the most awe-inspiring and yet paradoxical demonstration of nature’s prodigious temper and seductive grace. In the space of an hour, the sky can go from an azure blue to the colour of dark slate as giant cumulonimbus clouds broil and swell with latent energy.

Thunderstorms generate all kinds of severe weather: torrential downpours, vicious winds, hail, microbursts and even tornadoes. But they indirectly owe their very name to the one weather feature that claims the lives of, on average, 55 people every year in the United States: lightning!

Shocking Statistics


Source: Global distribution of lightning April 1995 – February 2003 from the combined observations of the NASA OTD (4/95-3/00) and LIS (1/98-2/03) instruments.

Approximately 8 million bolts of lightning strike the Earth every single day, starting 10,000 forest fires annually. In the United States, over 300,000 insurance claims are made against lightning damage every year and the bill for this damage is a staggering $400,000,000.

Yes. Thunderstorms are seriously dangerous systems. I shouldn’t have to tell you that and yet countless golfers are killed by lightning every year. Could there be anything less intelligent than standing in the middle of a wide open space during a thunderstorm with a metal rod in your hand pointed at the sky? With five billion joules of energy surging through a single lightning bolt – enough energy to illuminate a 100 watt bulb for three months – you are picking a fight you simply cannot win.

Against all logic, according to the U.S. National Weather Service, lightning STILL kills more people than tornadoes AND hurricanes combined. What is this madness?

It’s Electricity! 

Lightning thunderstorm picture 2

Thunderstorms are extremely busy weather systems. Within a storm cell, legions of water vapour particles are whipped, flung and tumbled around by complex air circulations. Storms themselves are powered by strong updrafts of hot, moist air. This air cools and condenses as it rises through the heights of the lower atmosphere, becoming dense. It consequently loses its upward momentum and sinks and spills out of the rear of the thunderstorm (check out the diagram below).

thunderstorm diagram

Photo Credit: “Thunderstorm formation” by NOAA T-storm-mature-stage.jpg. Licensed under Public Domain via Wikimedia Commons

Together, these motions form a continuous cycle of updrafts and downdrafts, which provides the storm system the energy it needs to electrocute golfers, whip cows into the air and blow Dorothy and her dog, Toto, into a parallel reality.

How does this explain what lightning is? Well, it brings us a lot closer to understanding cloud polarization. OMG. What does that mean?

Clouds Can be Bi-Polar Too

Just like batteries, molecules and certain members of your family, clouds too can become bi-polar. Within a thunderstorm, legions of water vapour particles get swirled around violently by the turbulent air circulations. But there are two predominant movements of air in a single cell storm system: hot moist air going up and colder drier air going down.

The water vapour particles being swept up into the cloud smash into those going down and these collisions, while totally invisible to us, are violent enough to cause the descending water particles to literally tear electrons off of the ascending water particles. Electrons are negative. So you see there is a gradual separation of charge within a thundercloud as the descending water particles become negatively charged and the rising water particles (having had an electron or two pilfered from their orbitals) become positively charged.

cloud polarisation thunderstorm

Credit: Earth Science Australia

As a result of particle motions within a thunderstorm, the lower cloud regions become negatively charged and the upper cloud regions positively charged. A positive charge is induced in the ground immediately below the thunderstorm in response to storm’s electric field.

The story doesn’t end here: the polarization of the thundercloud has an effect on its environment, namely, the surface of the Earth and the various objects on it. An electrical field swells outwards from the cloud, caressing the electrons belonging to Earth’s atoms, seducing them into moving. Those who studied physics will remember, electron movement = charge.

The presence of such a massive reservoir of negative charge immediately above the Earth’s surface repels its negatively charged electrons (like repels like), causing an opposing positive charge to build up. In other words, trees, poles, buildings and your head actually develop a static positive charge in the seconds prior to lightning strike. This is probably why people who have been struck by lightning and have lived to tell the tale say that they felt their hair stand on end just before they become a living conductor for 1,000,000,000 volts of electricity.


Lightning thunderstorm picture 4

At some critical juncture, nature notices the thunderstorm’s complete disregard for her love of equilibrium and so a raging streak of electricity discharges between the negative and positively-charged cloud regions. Or the negatively charged lower cloud regions and the positively charged ground immediately below it. And ZAP! You get lightning!

I can feel the cogs of your mind over-heating. So, if you aren’t quite happy with this explanation, then watch the movie Thor. While it doesn’t provide any scientific explanation on lightning genesis whatsoever, Chris Hemsworth is so beautiful you will forget your intellectual torment immediately *swoon*

Guys… you can enjoy watching Natalie Portman at her career low. In a lab coat.

I know I did.

sexy natalie-portman-celebrity

Thunder, Contrary to Kindergarten Mythology, is Not God’s Fart

In spite of my illuminating explanations above – coupled with your homework to watch Thor – the exact physics of lightning generation are not entirely understood. Thunder, on the other hand, is and its explanation makes for a very interesting story. You may want to remember this so you can impress a future date with it…

When lightning tears out of a cloud, the air in the discharge channel heats up from ambient air temperature to a toasty 28,000°C or 50,000°F. That’s approximately five times hotter than the surface of our Sun. And all of this happens in as little as 90 microseconds. I know, right? A yawning chasm of a time denomination.

The problem is, you can’t heat anything up from 10°C to 28,000°C in this short amount of time without some kind of catastrophic consequence. So when lightning shows the ill social etiquette of doing so, the air expands violently, generating a shockwave that explodes outwards from the discharge channel. This shockwave travels faster than the speed of sound – it’s supersonic – so we can’t actually hear it. Dogs probably could, but you’ll have to ask one to be certain.

With distance from the discharge channel, this shockwave slows down and as it does it falls within our audio range. That’s when we hear thunder. I have heard that if you stand close enough to lightning you won’t actually hear it, because the shockwave is supersonic. While this makes sense in theory, human trials are pending. It also explains why, when a storm is very close, the lightning makes a sharp cracking explosive sound while, when further away, you hear the thunder as a low sexy rumble.

Lightning thunderstorm picture 5

Class Dismissed: Your Take-Home Message

More people die of lightning injuries in Florida than anywhere else in America and perhaps even the world. While I’m aware that they have an amazing water world playground at their feet, they also have the highest lightning strike density in the entirety of the United States. Perhaps y’all should bear that in mind the next time you go wind surfing in an electrical storm.

Regardless of where you live, however, if you value your life then don’t swim, don’t bath, don’t chat on a land line, don’t play golf, don’t stand under a tree and don’t go running around like Julie Andrews in a thunderstorm. Otherwise, it won’t just be music the hills are alive with.

Oh, and enjoy the show! Isn’t nature spectacular?

Lightning thunderstorm picture 3

Like Why? Because Science‘s Facebook page to receive sexy doses of science on the daily!

Somewhere Over the Rainbow, Photons Fly!

Beautiful rainbow Grand Canyon

Image Source: “Rainbow Ignites” over Grand Canyon, uploaded by Cathy Smart to

Rainbows have enchanted humankind since our very beginnings, leading to the spinning of countless myths and legends about why and what they are. Just about every ancient civilization, culture and religion has its unique explanation of rainbows; all of them creative, but absolutely NONE of them correct. There is no pot of gold.

Aside from the fact that they look like a hippy has barfed across the sky, rainbows have quite a fascinating backstory involving the physics of light, which really isn’t all that complicated! In this blog, we’ll be taking a look at the physical laws and facts that give rise to some spectacular atmospheric masterpieces and a sky that would put a tie-dye T-shirt convention to shame.

The first ingredient on our palette is solar radiation…

You Need Sunshine, On a Cloudy Day!

One does not simply meme

Sunshine. It’s a simple concept: light from the sun. But one does not simply have interminable nuclear reactions without generating a spectrum of electromagnetic radiation. Our sun is a star and in keeping with the personality of stars, things are positively nuclear beneath its photosphere. These nuclear fusion reactions release a broad range of radiation types (see diagram below), from low energy, long wavelength infrared radiation (left) to the high energy, short wavelength Gamma radiation (right).


Image Source: The Electromagnetic Spectrum –

Slap bang in the middle of the electromagnetic spectrum is visible light, which only accounts for a narrow portion of the total energy generated by our sun day-after-day. This visible light pours out into space faster than Kris Jenner can say to Bruce “You’re becoming a what!?” covering the vast distance between the Sun and Earth in just 8 minutes and 20 seconds. It then smacks into our atmosphere and all its constituent gas and water vapor molecules. The photons (particles of light) that manage to escape atmospheric collision end their journey at the Earth’s surface, which is what brings warmth to our lives and color to our environment.

Snow White Light and the Seven Composite Colors

As I explained in the blog The Sky Is Only Sometimes Blue, visible (white) light is composed of seven different colors. Each of these colors has a different wavelength and ranges from the lower frequency, longer wavelength color red to the higher frequency, shorter wavelength color violet.

When visible light from the sun strikes a white surface, all of its seven dwarfs, I mean constituent colors get scattered in every direction, which is why we view the object as Snow White, I mean white. If that object is black, however, all of those seven colors become absorbed by the object, which is why you can cook an egg on the dashboard of your black Merc after leaving it in the sun for an hour.

visible light spectrum rainbow

Image Source: The Visible Light Spectrum – CultureLab/LabCulture at

What about colorful objects?

Violet surfaces, like your gay best friend’s curtains, selectively scatter light with a wavelength of around 400 nanometers and absorb the rest. As such, you perceive the color violet (and bad taste) when you look at them.

Blue surfaces, like your lover’s eyes, selectively scatter light with a wavelength of around 450 nanometers. As such, you perceive the color blue and experience inappropriate clenchings in the nethers.

MIRRORS, interestingly enough, reflect all the seven colors of incoming visible light, but instead of scattering them in random directions, they reflect them at precisely the same angle as they arrived at and so the integrity of the image is preserved.

WHAT does this have to do with rainbows?

This discussion is intended to help you understand and appreciate the nature of visible light and the fact that it’s composed of different colors, which are capable of acting independently of each other due to their different wavelengths.

Now it’s when visible light strikes water droplets in our atmosphere that the real magic can begin to happen, potentially making it look like a unicorn wiped its butt on the horizon…

Prism (Not a Katy Perry Album)

Prism rainbow

Image Source: All The Pretty Colors – SeeMore Sights,

So far, we’ve spoken about light as though it travels in a straight line, which is typically what it does between bouncing off of and being scattered by objects. However, this isn’t the case when it travels through water. When visible light travels from one medium to another – from air into the water – its pathway becomes slightly bent in a process termed “refraction.” This explains why objects under water look so strange: the light that enables us to perceive them is being refracted or bent and this makes your toes (or whatever body part you happen to be scrutinizing) look bigger and closer to you than they really are.

When sunlight passes through a water droplet, it deviates slightly from its incoming direction, because it’s refracted (see diagram below). A portion of this light is then reflected off the far surface of the raindrop. If this angle is at 40° – 42° to the original direction of incoming sunlight, we get a rainbow!

how rainbows are formed

Image Source: What Causes a Rainbow? NASA/NOAA –

So you see, rain droplets not only refract the sunlight that passes through them, they also act as prisms. The reason this process results in a rainbow is because the seven constituent colors of visible sunlight become refracted to different degrees: the shortest wavelength light (violet) becomes refracted the most and so it’s bent the most. The largest wavelength light (red) becomes refracted the least and so it’s bent the least. As such, when white light passes through a water droplet, it becomes split into its seven different personalities, from violet, blue and green to yellow, orange and red!

This is beautifully captured in the following 40-second video:

Video Source: “Light Split into Colors by a Prism” Uploaded by MadDogScience in YouTube channel

A Rainbow Is Made!

We can now understand how white visible light, upon passing through water droplets suspended in the atmosphere, is split into its seven constituent colors. The final piece of the puzzle is looking at this process on the large scale. There are billions of water droplets in clouds or mist and each one disperses and refracts the sunlight that hits it. The overall result is a vast display of color in a circular or semicircular arc. Obviously, to us here on Earth, most rainbows would appear to be semi-circular, because the ground gets in the way of us seeing the other half. However, viewed from the air or from the following rare perspective at the top of Zambia’s Victoria Falls, we can see the full glorious monty:

Rainbow, Victoria Falls, Zambia - Aug 2012

Image Source: Circle Rainbow Over Victoria Falls, Zambia – Aug 2012 by Nicole Cambré/REX (2105841a): FULL WORDS LINK:

What I haven’t mentioned yet is that perspective plays a major role in our ability to visually enjoy rainbows. The sun has to be behind you and the angle of dispersion – the angle between the incoming sunlight and the direction the refracted light is exiting the raindrop – has to be between 40° and 42°.

Beautiful rainbow pictures

Image Source: Rainbow Over Lake Ontario, uploaded by Melagoo on Weather Underground,

Class Dismissed: Your Take-Home Message

Rainbows have this wonderful effect on people: they make us look. They compel us to forget for just a few seconds everything it is we are thinking/worrying/stressing about and look up to the sky and admire. Really, all a rainbow is is water droplets playing with the paths and emotions of sunlight… but they are beautiful and a reminder that God – or whatever deity is or isn’t up there – is in fact a fan of gay people.

lgbt gay rainbow flag

Image Source:

Copyright © Thea Beckman 2015

Run For Cover: Hailstorms on Camera!

Hail is formed by severe thunderstorms and can range in size from super tiny pellets, which sound as though a mouse is tap-dancing on your roof, to massive grapefruits that plough straight THROUGH your roof. In this collection of three videos, we see just how large hailstones give tornadoes a run for their money in terms of the damage they can do.

For a more detailed account of hailstone formation, check out last week’s blog post: Goodness Gracious Great Balls of Ice!

Hailstorm Video # 1

This incredible video clip was filmed – mercifully – from the safety of a residential home. It records the deafening sound of massive hailstones slamming into the roof, as well as into the garden and pool. Note the huge splashes generated by the falling hailstones hitting the water and the size of the stones themselves as they accumulate on the grass.

Insurance companies in Oklahoma must have a very long and convoluted “Terms and Conditions” clause under the “Act of God” claim.

Video Source: “Hail Storm Oklahoma City” Uploaded by Beatlesfanxxl on May 16, 2010, YouTube Channel

Hailstorm Video # 2

Just when you think it can’t get any worse than having large chunks of ice smashing into your roof, porch, pool and garden vegetation, the intensity of the hailstorm swells. Suddenly, it LITERALLY starts raining branches, leaves and torn-up vegetation as this colossal hailstorm shows off its mettle. According to the person who filmed this video, the hailstones ranged in size from peas to baseballs and actually halted traffic on the interstate highways.

Thankfully, the kind of large hail produced by these large thunderstorms tends to fall in narrow swaths and as such, they rarely last longer than a minute in any one area. Still, though, that’s all it takes to leave you with enough yard cleaning to do for weeks!

Video Source: “Incredible Hailstorm Phoenix, Arizona” Uploaded by ChiliDog1723 on October 28, 2010, YouTube Channel

Hailstorm Video # 3

From beginning to end, this amazing hailstorm video shows the incredible damage done by hailstones the size of tennis balls as they smash into Woodson Texas soil, cars and even electrical cables. The guy filming it manages to pick up a couple of the hailstones to show us the size of these monsters in comparison to a quarter (US currency). Towards the end, an ambulance loads a patient who unfortunately got caught in the hailstorm and hopefully only sustained minor injuries. It just goes to show that, in storms the size and strength they are in the American Midwest, not even your car offers you sufficient refuge.

Video Source: “Very Large Hail” uploaded by Cld9trs on November 8, 2006, YouTube channel

Drunk History (& Science): The Story of Benjamin Franklin

If you found your own history lessons at school mind-numbingly boring (who didn’t?) then this epic telling of the story of Benjamin Franklin will have you paying attention like never before. Who better to learn about the history of one of America’s greatest science pioneers (and political figureheads) from than a drunk celebrity? Illustrating a totally inebriated Eric Falconer’s account of Benjamin Franklin’s kite experiment are funny actors Jack Black and Clark Duke.

Source: Derek Waters’ “Drunk History” on YouTube channel

For more from the masterminds behind this genius and totally hilarious American comedy show, check out

Sensitive viewers, please note that when Eric says he’s going to puke he actually does, although it’s not too graphic. Just calmly put down your onion bagel around the 1:45 mark. You’re welcome.

Aurora Northern Lights: The Most Amazing Thing You’ll Ever See

Northern lights above a beach in Norway

The aurora northern lights in Norway

No matter what your interests, hobbies, job, gender, race and age; no matter who you are and whether you’re interested in science or not… the most amazing thing you’ll ever see is the aurora. There are spectacles that come close: your baby’s first steps, sunrise on the gulf of Thailand, the first time you see a girl’s boobs up close (for free), or your dog dragging his arse across the living room carpet. But short of erupting volcanoes, oncoming tornadoes and meteor showers, the most amazing thing you’ll ever see is the aurora. And how could it not be?

The aurora looks very much like the gentle rippling of otherworldly greens, pinks, reds and even purples across the deep night sky: like some alien abstract artist swishing radioactive water paint across a black canvas. These colours stream and pulse, shimmer and crackle, swell and fade and ebb and flow. Watching the aurora lights must be the ultimate exercise in escapism. It must be impossible to imagine that you’re still on planet Earth with a view shown in the picture above and below. Not even Arthur C. Clark could paint – with words – a more vivid picture of a totally alien landscape.

Northern lights above lagoon in Iceland

The aurora lights glimmer and stream over a lagoon in Iceland

Is there anything more beautiful, more breath-taking and more enchanting? I wouldn’t know… I’ve never seen the aurora. But if the pictures and YouTube videos are anything to go by, I can’t even begin to imagine what it must be like to stand underneath a canopy of those shimmering ethereal lights. It would probably blow my fragile mind and break my tender heart.

So, What Are The Aurorae?

Contrary to the myths surrounding the aurora, this phenomenon is not your ancestors jiving across the sky, nor is it some kind of luminous bridge into the other world. Our ancient counterparts do, however, earn themselves an ‘A+’ for imagination and also for the foresight to invent the wheel. That has turned out to be kinda useful.

The Aurora is caused by the Sun rudely belching its charged gassy particles all over Earth’s outer atmosphere. This may sound horribly uncouth, but it is a most appropriate metaphor for the physical reality. Let’s take a closer look at the Sun… the long-winded explanation if you will.

Har har.

 Some Alka-Seltzer for the Sun, Please

Beautiful close up of sun

Solar flares erupt from the Sun’s raging photosphere

The Sun is a star. And like all stars, its incredible mass causes unending catastrophic nuclear reactions in its hellish interior. Convection – great currents of outward bound surges of intense heat – transports mass to the surface of the Sun from its molten interior. As you can imagine, the surface of the Sun is anything but Swan Lake. It’s an intense bubbling conflagration of scalding heat.

Great bubbles of burning gas ride these convection currents like the turtles ride the East Australian Current in Finding Nemo and, in a prodigious release of energy, blast out of the Sun’s photosphere. This eruption of energy is known as a solar flare and it is a truly devastating phenomenon that can represent a staggering 17% of the Sun’s entire energy output per second… that’s approximately 600,000,000,000,000,000,000,000,000 joules of energy, give or take a joule.

The flares that erupt out of the Sun’s sexy corona (not beer) belch out obscene clouds of electrons and charged atoms, which stream out into space and collide with anything and everything in their path. Sometimes that anything and everything is our humble little planet.

Earth's magnetic shield solar flare

Diagram: Solar flare activity and its effect on the Earth. The circular lines surrounding the sun-facing side of our planet represent our magnetic field and how it shields us from much of the incoming solar radiation.

Even though our tiny blue planet lies 15 billion kilometres (93 million miles) away, the streams of charged particles emitted by the Sun still reach us and they do so typically within a day or two of a solar flare occurring. This incomprehensible distance represents a leisurely stroll in the park for solar radiation, which doesn’t only consist of the light we perceive as daytime, but rather the entire electromagnetic spectrum, from high energy gamma rays (dangerous) right through to sluggishly slow and lazy radio waves (not dangerous).

These charged particles slap against the outer reaches of our atmosphere, which can damage the little microchips in satellites, disrupt power grids, interfere with radio signals and… *drumroll* cause the sky to incandesce with beautiful otherworldly lights!

Northern Sweden - Northern Lights Aurora

A Charged Particle Walks into a Bar…

Charged particles from the Sun smack into the gas molecules that make up our atmosphere, exciting their electrons into higher energy orbits. Don’t worry, I won’t be testing you on this later. When these electrons have had a chance to chill out, they sink back into their normal orbits, releasing the excess energy they had in the form of light.

In plain English: A charged particle from the Sun walks into a bar and straight up to an oxygen atom. It smacks oxygen right in the gob, enraging oxygen which, as a result of its excited state, goes bright green with anger at the impudence of this charged solar particle. If the molecular victim in this analogy was nitrogen, it would have glowed red or blue.

Sunrise over planet Earth.

On a vast scale of thousands of square kilometres, the effects of charged solar particles walking into zillions of bars and smacking zillions of oxygen molecules in the faces is staggeringly beautiful. And in spite of the violence of it all, the resultant visual spectacle looks like gentle waves of brilliant light caressing the night sky.

This mechanism may sound horribly confusing, but just because I used “charged” and “particle” in the same sentence doesn’t mean that comprehension is totally beyond you. In fact, we are surrounded by examples of the very same mechanism that cause the aurorae. Neon is a gas and when its atoms are excited, they too incandesce and emit a powerful glow. In the case of neon lights, the source of excitement is electricity.

Hotel neon sign

Aurora Borealis, Aurora Australis

You may have heard of either, but they are essentially the same thing. Australis means “southern” in Latin – think Australia or Australopithecus, “southern man,” our earliest ancestor who was thusly dubbed because his (or her) crumbly ancient remains were discovered in southern African soil.

Borealis means “northern.” So if you live in or visit the icy clutches of the extreme north, in the countries bordering on the Arctic Ocean, you stand a chance of witnessing the Aurora Borealis, while those in the extreme southern latitudes, the Aurora Australis.

Class Dismissed: Your Take-Home Message

The biggest challenge I’ve faced in writing this has been to choose the correct words to convey the sheer otherworldly beauty of the aurorae. If I haven’t done this phenomenal phenomenon the full justice it deserves, then the following video of the aurora borealis definitely will. Isn’t it the most amazing thing you’ve ever seen? (No offence to the first pair of boobs you ever saw).

Video Source: “Spectacular Norway Northern Lights” uploaded by National Geographic on YouTube channel

“Ooh, Aah!” 10 Pretty Amazing Sciencey Photographs

# 1: A massive dust storm engulfs much of Western Australia, 2013. This picture was taken from the safety and clear perspective of an ocean vessel.


# 2: Her name is “Bagger 288″ and at 13,500 tonnes she is the biggest land vehicle in the world! Don’t tell her that though, or you may give her self-esteem issues.


# 3: Cancer cells under an electron microscope. They really do look as insidious as you’d expect them to.


# 4: A picture of Einstein’s dishevelled desk only hours after his death on April 18th, 1955. This is probably the birthplace of science’s most important breakthroughs.


# 5: Aurora borealis (Northern Lights) as seen from space.


# 6: Baby octopi! Could they be called octopussies?


# 7: This is purportedly the best and clearest picture that has ever been taken of the planet Mercury, courtesy of NASA. The colour variations have been accentuated to reveal the topography of the planet. Otherwise, it would appear a dull brown to the human eye. Here’s an interesting fact: Mercury is so small and its gravitational pull so measly that it doesn’t even have an atmosphere! Not even gas molecules are attracted to the planet!


# 8: The human tongue under a microscope. GROSS! Try not to imagine this the next time you tash on with someone!


# 9: Ethiopia’s ever active volcano, Erta Ale, maintains this perennial lava lake. No water sports here, tourists, although the scenery is breathtaking!


# 10: What pugs looked like before they were selectively bred to look way cuter and more snub-snouted.


Image Source: